Перевод: со всех языков на английский

с английского на все языки

Appleton layer

  • 1 Appleton-Schicht

    f AUDIO Appleton layer, ELEKTRON Appleton layer, F-layer

    Deutsch-Englisch Wörterbuch für Informatik > Appleton-Schicht

  • 2 Appleton-Schicht

    f < geo> (Ionosphäre) ■ Appleton layer

    German-english technical dictionary > Appleton-Schicht

  • 3 Appleton, Sir Edward Victor

    [br]
    b. 6 September 1892 Bradford, England
    d. 21 April 1965 Edinburgh, Scotland
    [br]
    English physicist awarded the Nobel Prize for Physics for his discovery of the ionospheric layer, named after him, which is an efficient reflector of short radio waves, thereby making possible long-distance radio communication.
    [br]
    After early ambitions to become a professional cricketer, Appleton went to St John's College, Cambridge, where he studied under J.J.Thompson and Ernest Rutherford. His academic career interrupted by the First World War, he served as a captain in the Royal Engineers, carrying out investigations into the propagation and fading of radio signals. After the war he joined the Cavendish Laboratory, Cambridge, as a demonstrator in 1920, and in 1924 he moved to King's College, London, as Wheatstone Professor of Physics.
    In the following decade he contributed to developments in valve oscillators (in particular, the "squegging" oscillator, which formed the basis of the first hard-valve time-base) and gained international recognition for research into electromagnetic-wave propagation. His most important contribution was to confirm the existence of a conducting ionospheric layer in the upper atmosphere capable of reflecting radio waves, which had been predicted almost simultaneously by Heaviside and Kennelly in 1902. This he did by persuading the BBC in 1924 to vary the frequency of their Bournemouth transmitter, and he then measured the signal received at Cambridge. By comparing the direct and reflected rays and the daily variation he was able to deduce that the Kennelly- Heaviside (the so-called E-layer) was at a height of about 60 miles (97 km) above the earth and that there was a further layer (the Appleton or F-layer) at about 150 miles (240 km), the latter being an efficient reflector of the shorter radio waves that penetrated the lower layers. During the period 1927–32 and aided by Hartree, he established a magneto-ionic theory to explain the existence of the ionosphere. He was instrumental in obtaining agreement for international co-operation for ionospheric and other measurements in the form of the Second Polar Year (1932–3) and, much later, the International Geophysical Year (1957–8). For all this work, which made it possible to forecast the optimum frequencies for long-distance short-wave communication as a function of the location of transmitter and receiver and of the time of day and year, in 1947 he was awarded the Nobel Prize for Physics.
    He returned to Cambridge as Jacksonian Professor of Natural Philosophy in 1939, and with M.F. Barnett he investigated the possible use of radio waves for radio-location of aircraft. In 1939 he became Secretary of the Government Department of Scientific and Industrial Research, a post he held for ten years. During the Second World War he contributed to the development of both radar and the atomic bomb, and subsequently served on government committees concerned with the use of atomic energy (which led to the establishment of Harwell) and with scientific staff.
    [br]
    Principal Honours and Distinctions
    Knighted (KCB 1941, GBE 1946). Nobel Prize for Physics 1947. FRS 1927. Vice- President, American Institute of Electrical Engineers 1932. Royal Society Hughes Medal 1933. Institute of Electrical Engineers Faraday Medal 1946. Vice-Chancellor, Edinburgh University 1947. Institution of Civil Engineers Ewing Medal 1949. Royal Medallist 1950. Institute of Electrical and Electronics Engineers Medal of Honour 1962. President, British Association 1953. President, Radio Industry Council 1955–7. Légion d'honneur. LLD University of St Andrews 1947.
    Bibliography
    1925, joint paper with Barnett, Nature 115:333 (reports Appleton's studies of the ionosphere).
    1928, "Some notes of wireless methods of investigating the electrical structure of the upper atmosphere", Proceedings of the Physical Society 41(Part III):43. 1932, Thermionic Vacuum Tubes and Their Applications (his work on valves).
    1947, "The investigation and forecasting of ionospheric conditions", Journal of the
    Institution of Electrical Engineers 94, Part IIIA: 186 (a review of British work on the exploration of the ionosphere).
    with J.F.Herd \& R.A.Watson-Watt, British patent no. 235,254 (squegging oscillator).
    Further Reading
    Who Was Who, 1961–70 1972, VI, London: A. \& C.Black (for fuller details of honours). R.Clark, 1971, Sir Edward Appleton, Pergamon (biography).
    J.Jewkes, D.Sawers \& R.Stillerman, 1958, The Sources of Invention.
    KF

    Biographical history of technology > Appleton, Sir Edward Victor

  • 4 Appleton-Schicht

    f
    1. F layer
    2. F region

    Deutsch-Englisches Wörterbuch > Appleton-Schicht

  • 5 aplitonov sloj

    • appleton layer

    Serbian-English dictionary > aplitonov sloj

  • 6 f-sloj jonosfere

    • appleton layer

    Serbian-English dictionary > f-sloj jonosfere

  • 7 obszar jonosferyczny

    • Appleton layer
    • F-layer

    Słownik polsko-angielski dla inżynierów > obszar jonosferyczny

  • 8 слой

    bed, coat, coating, ( покрытия) course, fold, (штукатурного раствора, краски) lay, layer, ( при слоевой выемке с закладкой) lift горн., ( материала) ply, slice, seam, sheet, shell, stratum, (напр. картона) thickness, ( древесины) zone
    * * *
    слой м.
    1. layer
    2. ( покрытие) coat(ing)
    наноси́ть, напр. [m2], то́лстый или то́нкий слой кра́ски, сма́зки и т. п. — apply [give], e. g., a heavy or thin coat(ing) of paint, grease, etc.
    3. (многослойного материала, напр. стеклопластика, фанеры) ply
    адсорбцио́нный слой — adsorbed layer
    акти́вный слой — active layer
    слой атмосфе́ры, ве́рхний — the upper atmosphere
    слой атмосфе́ры, ни́жний — the lower atmosphere
    слой ба́зы транзи́стора — base layer
    балла́стный слой — ballast (bed), body of ballast
    барье́рный слой полупр.barrier layer
    ве́нтильный слой полупр.barrier region
    вертика́льный слой горн.vertical slice
    впла́вленный слой полупр.fused layer
    слой в подши́пниках скольже́ния, антифрикцио́нный — babbitt [white metal] lining
    выра́внивающий слой стр. — levelling course, levelling blanket
    вы́ращенный слой полупр.grown layer
    слой, вы́ращенный из га́зовой фа́зы полупр.vapour-grown layer
    слой, вы́ращенный ме́тодом жи́дкостной эпитакси́и полупр. — liquid-epitaxial layer, layer grown by liquid-epitaxial technique
    слой, вы́ращенный ме́тодом парово́й эпитакси́и полупр.vapour-epitaxial layer
    горизонта́льный слой горн.horizontal layer
    двойно́й электри́ческий слой — electric double layer
    диагона́льный слой горн.diagonal slice
    дрени́рующий слой стр.damage blanket
    слой зама́зки, подсти́лочный ( для остекления) — bed(ding) of putty
    запо́рный слой ( варактора) — barrier layer
    слой B ионосфе́ры — B-layer
    слой C ионосфе́ры — C-layer
    слой D ионосфе́ры — D-layer, Chapman layer
    слой E ионосфе́ры — E-layer, Kennelly-Heaviside layer
    слой F ионосфе́ры — F-layer, Appleton layer
    кипя́щий слой — fluidized bed
    кипя́щий слой самовыра́внивается — the fluidized bed seeks its own level
    колле́кторный слой ( транзистора) — collector layer
    ламина́рный слой — laminar layer
    леги́рованный слой полупр.doped layer
    слой ле́нты ( конвейера) — belt ply
    магнитогидродинами́ческий слой — magnetohydrodynamic [MHD] layer
    накры́вочный слой стр.finish(ing) coat
    слой намо́тки текст.winding layer
    напла́вленный слой метал.built-up layer
    напылё́нный слой — evaporated layer
    слой, напылё́нный в ва́кууме — vacuum-evaporated layer
    обеднё́нный слой полупр.depletion layer
    обогащё́нный слой полупр.enriched layer
    о́кисный слой — oxide layer
    осаждё́нный слой — deposited layer
    слой, осаждё́нный в ва́кууме — vacuum-deposited layer
    отде́лочный слой стр.finish(ing) coat
    отража́ющий слой — reflecting layer
    пе́нный слой ( при тушении пожара) — foam blanket
    перехо́дный слой — физ. transition layer; полупр. transition region
    пове́рхностный слой — surface layer
    пограни́чный слой — boundary layer
    подстила́ющий слой — underlayer
    слой полови́нного поглоще́ния физ. — half-thickness, half-value layer
    присте́нный слой — wall layer
    проводя́щий слой — conducting layer
    противоорео́льный слой кфт.antihalation layer
    слой растяже́ния ( клиновидного ремня) — top reinforcing layer
    светочувстви́тельный слой — light-sensitive layer
    связу́ющий слой стр. — binding [binder] course; tack coat
    слой сжа́тия ( клиновидного ремня) — compression layer
    уто́пленный слой ( интегральной схемы) — buried layer
    фильтру́ющий слой — filter bed
    слой ши́ны, бре́керный — breaker-strip ply of a tyre
    слой ши́ны, подпроте́кторный — undertread layer of a tyre
    слой ши́ны, поду́шечный — cushion ply of a tyre
    слой штукату́рки, выра́внивающий — floating coat
    слой штукату́рки, отде́лочный — setting coat, plaster finish
    слой штукату́рки, пе́рвый — rendering coat
    эпитаксиа́льной слой — epitaxial [epitaxially grown] layer, epi-layer

    Русско-английский политехнический словарь > слой

  • 9 слой F

    Универсальный русско-английский словарь > слой F

  • 10 слой F ионосферы

    Универсальный русско-английский словарь > слой F ионосферы

  • 11 слой F

    ( ионосферы) Appleton layer, F layer, F-region

    Русско-английский словарь по электронике > слой F

  • 12 слой F

    ( ионосферы) Appleton layer, F layer, F-region

    Русско-английский словарь по радиоэлектронике > слой F

  • 13 слой F

    ( ионосферы) Appleton layer, F layer, F-region

    Русско-английский политехнический словарь > слой F

  • 14 область слоёв F1 и F2 ионосферы

    Универсальный русско-английский словарь > область слоёв F1 и F2 ионосферы

  • 15 appletonsjikt

    subst. appleton layer

    Norsk-engelsk ordbok > appletonsjikt

  • 16 appletonskikt

    subst. (Riksmål, eg. appletonsjikt) appleton layer

    Norsk-engelsk ordbok > appletonskikt

  • 17 F2-Schicht

    f AUDIO Appleton layer

    Deutsch-Englisch Wörterbuch für Informatik > F2-Schicht

  • 18 Heaviside, Oliver

    [br]
    b. 18 May 1850 London, England
    d. 2 February 1925 Torquay, Devon, England
    [br]
    English physicist who correctly predicted the existence of the ionosphere and its ability to reflect radio waves.
    [br]
    Brought up in poor, almost Dickensian, circumstances, at the age of 13 years Heaviside, a nephew by marriage of Sir Charles Wheatstone, went to Camden House Grammar School. There he won a medal for science, but he was forced to leave because his parents could not afford the fees. After a year of private study, he began his working life in Newcastle in 1870 as a telegraph operator for an Anglo-Dutch cable company, but he had to give up after only four years because of increasing deafness. He therefore proceeded to spend his time studying theoretical aspects of electrical transmission and communication, and moved to Devon with his parents in 1889. Because the operation of many electrical circuits involves transient phenomena, he found it necessary to develop what he called operational calculus (which was essentially a form of the Laplace transform calculus) in order to determine the response to sudden voltage and current changes. In 1893 he suggested that the distortion that occurred on long-distance telephone lines could be reduced by adding loading coils at regular intervals, thus creating a matched-transmission line. Between 1893 and 1912 he produced a series of writings on electromagnetic theory, in one of which, anticipating a conclusion of Einstein's special theory of relativity, he put forward the idea that the mass of an electric charge increases with its velocity. When it was found that despite the curvature of the earth it was possible to communicate over very great distances using radio signals in the so-called "short" wavebands, Heaviside suggested the presence of a conducting layer in the ionosphere that reflected the waves back to earth. Since a similar suggestion had been made almost at the same time by Arthur Kennelly of Harvard, this layer became known as the Kennelly-Heaviside layer.
    [br]
    Principal Honours and Distinctions
    FRS 1891. Institution of Electrical Engineers Faraday Medal 1924. Honorary PhD Gottingen. Honorary Member of the American Association for the Advancement of Science.
    Bibliography
    1872. "A method for comparing electro-motive forces", English Mechanic (July).
    1873. Philosophical Magazine (February) (a paper on the use of the Wheatstone Bridge). 1889, Electromagnetic Waves.
    Further Reading
    I.Catt (ed.), 1987, Oliver Heaviside, The Man, St Albans: CAM Publishing.
    P.J.Nahin, 1988, Oliver Heaviside, Sage in Solitude: The Life and Works of an Electrical Genius of the Victorian Age, Institute of Electrical and Electronics Engineers, New York.
    J.B.Hunt, The Maxwellians, Ithaca: Cornell University Press.
    KF

    Biographical history of technology > Heaviside, Oliver

  • 19 Kennelly, Arthur Edwin

    [br]
    b. 17 December 1871 Colaba, Bombay, India
    d. 18 June 1939 Boston, Massachusetts, USA
    [br]
    Anglo-American electrical engineer who predicted the ionosphere and developed mathematical analysis for electronic circuits.
    [br]
    As a young man, Kennelly worked as office boy for a London engineering society, as an electrician and on a cable-laying ship. In 1887 he went to work for Thomas Edison at West Orange, New Jersey, USA, becoming his chief assistant. In 1894, with Edwin J.Houston, he formed the Philadelphia company of Houston and Kennelly, but eight years later he took up the Chair of Electrical Engineering at Harvard, a post he held until his retirement in 1930. In 1902 he noticed that the radio signals received by Marconi in Nova Scotia from the transmitter in England were stronger than predicted and postulated a reflecting ionized layer in the upper atmosphere. Almost simultaneously the same prediction was made in England by Heaviside, so the layer became known as the Kennelly-Heaviside layer. Throughout most of his working life Kennelly was concerned with the application of mathematical techniques, particularly the use of complex theory, to the analysis of electrical circuits. With others he also contributed to an understanding of the high-frequency skin-effect in conductors.
    [br]
    Principal Honours and Distinctions
    President, American Institute of Electrical Engineers 1898–1900. President, Institution of Electrical Engineers 1916. Institute of Electrical and Electronics Engineers Medal of Honour 1932; Edison Medal 1933.
    Bibliography
    1915, with F.A.Laws \& P.H.Pierce "Experimental research on the skin effect in conductors", Transactions of the American Institute of Electrical Engineers 34:1,953.
    1924, Hyperbolic Functions as Applied to Electrical Engineering.
    1924, Check Atlas of Complex Hyperbolic \& Circular Functions (both on mathematics for circuit analysis).
    Further Reading
    K.Davies, 1990, Ionospheric Radio, London: Peter Peregrinus. See also Appleton, Sir Edward Victor.
    KF

    Biographical history of technology > Kennelly, Arthur Edwin

  • 20 Watson-Watt, Sir Robert Alexander

    [br]
    b. 13 April 1892 Brechin, Angus, Scotland
    d. 6 December 1973 Inverness, Scotland
    [br]
    Scottish engineer and scientific adviser known for his work on radar.
    [br]
    Following education at Brechin High School, Watson-Watt entered University College, Dundee (then a part of the University of St Andrews), obtaining a BSc in engineering in 1912. From 1912 until 1921 he was Assistant to the Professor of Natural Philosophy at St Andrews, but during the First World War he also held various posts in the Meteorological Office. During. this time, in 1916 he proposed the use of cathode ray oscillographs for radio-direction-finding displays. He joined the newly formed Radio Research Station at Slough when it was opened in 1924, and 3 years later, when it amalgamated with the Radio Section of the National Physical Laboratory, he became Superintendent at Slough. At this time he proposed the name "ionosphere" for the ionized layer in the upper atmosphere. With E.V. Appleton and J.F.Herd he developed the "squegger" hard-valve transformer-coupled timebase and with the latter devised a direction-finding radio-goniometer.
    In 1933 he was asked to investigate possible aircraft counter-measures. He soon showed that it was impossible to make the wished-for radio "death-ray", but had the idea of using the detection of reflected radio-waves as a means of monitoring the approach of enemy aircraft. With six assistants he developed this idea and constructed an experimental system of radar (RAdio Detection And Ranging) in which arrays of aerials were used to detect the reflected signals and deduce the bearing and height. To realize a practical system, in September 1936 he was appointed Director of the Bawdsey Research Station near Felixstowe and carried out operational studies of radar. The result was that within two years the East Coast of the British Isles was equipped with a network of radar transmitters and receivers working in the 7–14 metre band—the so-called "chain-home" system—which did so much to assist the efficient deployment of RAF Fighter Command against German bombing raids on Britain in the early years of the Second World War.
    In 1938 he moved to the Air Ministry as Director of Communications Development, becoming Scientific Adviser to the Air Ministry and Ministry of Aircraft Production in 1940, then Deputy Chairman of the War Cabinet Radio Board in 1943. After the war he set up Sir Robert Watson-Watt \& Partners, an industrial consultant firm. He then spent some years in relative retirement in Canada, but returned to Scotland before his death.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1941. FRS 1941. US Medal of Merit 1946. Royal Society Hughes Medal 1948. Franklin Institute Elliot Cresson Medal 1957. LLD St Andrews 1943. At various times: President, Royal Meteorological Society, Institute of Navigation and Institute of Professional Civil Servants; Vice-President, American Institute of Radio Engineers.
    Bibliography
    1923, with E.V.Appleton \& J.F.Herd, British patent no. 235,254 (for the "squegger"). 1926, with J.F.Herd, "An instantaneous direction reading radio goniometer", Journal of
    the Institution of Electrical Engineers 64:611.
    1933, The Cathode Ray Oscillograph in Radio Research.
    1935, Through the Weather Hours (autobiography).
    1936, "Polarisation errors in direction finders", Wireless Engineer 13:3. 1958, Three Steps to Victory.
    1959, The Pulse of Radar.
    1961, Man's Means to his End.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, Stevenage: Peter Peregrinus.
    KF

    Biographical history of technology > Watson-Watt, Sir Robert Alexander

См. также в других словарях:

  • Appleton layer — n. [after Sir Edward Appleton (1892 1965), Eng scientist] the F2 layer of the ionosphere: see F LAYER …   English World dictionary

  • Appleton layer — Geophysics. See under F layer. [1930 35; named after Sir E. V. APPLETON] * * *       upper layer (called F2) of the F region (q.v.) of the ionosphere. * * * …   Universalium

  • Appleton layer — The F2 layer of the ionosphere, which is located at an approximate height of 110 to 210 miles (180–350 km). The height of this layer varies in summers and winters as well as during the day and the night. It affects daytime propagation and… …   Aviation dictionary

  • Appleton layer — noun the highest region of the ionosphere (from 90 to 600 miles up) which contains the highest concentration of free electrons and is most useful for long range radio transmission • Syn: ↑F layer, ↑F region • Instance Hypernyms: ↑region, ↑part •… …   Useful english dictionary

  • Layer — may refer to: * A layer of dieposits found on archaeological excavation isolated as a single context in the stratigraphy of the site * A layer hen, a hen raised to produce eggs. * In abstraction, a layer is an abstract place conceived as having… …   Wikipedia

  • Appleton , Sir Edward Victor — (1892–1965) British physicist Appleton was born in Bradford and studied physics at Cambridge University from 1910 to 1913. During World War I, while he was serving in the Royal Engineers, he developed the interest in radio that was to influence… …   Scientists

  • Appleton, Sir Edward Victor — ▪ British physicist born Sept. 6, 1892, Bradford, Yorkshire, Eng. died April 21, 1965, Edinburgh, Scot.       British winner of the Nobel Prize for Physics in 1947 for his discovery of the so called Appleton layer of the ionosphere, which is a… …   Universalium

  • layer — Synonyms and related words: Appleton layer, F layer, Heaviside Kennelly layer, Van Allen belt, arrange in layers, belt, bookie, chemosphere, delaminate, desquamate, exfoliate, flake, ionosphere, isothermal region, laminate, lay down, lay up,… …   Moby Thesaurus

  • Appleton,Sir Edward Victor — Appleton, Sir Edward Victor. 1892 1965. British physicist. He won a 1947 Nobel Prize for his discovery of the F layer of the ionosphere. * * * …   Universalium

  • Appleton-Schicht — Ionosphärenschichten (engl. Layer) in Abhängigkeit von der Tageszeit Die Appleton Schicht, auch F Schicht genannt, ist ein Teil der Ionosphäre der Erde. Sie ist die höchstgelegene der Schichten der Ionosphäre an denen kurzwellige Funksignale… …   Deutsch Wikipedia

  • Appleton layers — /ˈæpəltən leɪəz/ (say apuhltuhn layuhz) plural noun the upper layers of the ionosphere, beyond the Heaviside layer, important in the reflection of radio waves. See F layer. {named after Sir Edward Appleton} …  

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»